Loop Algebras, Gauge Invariants and a New Completely Integrable System
نویسنده
چکیده
One fruitful motivating principle of much research on the family of integrable systems known as “Toda lattices” has been the heuristic assumption that the periodic Toda lattice in an affine Lie algebra is directly analogous to the nonperiodic Toda lattice in a finite-dimensional Lie algebra. This paper shows that the analogy is not perfect. A discrepancy arises because the natural generalization of the structure theory of finite-dimensional simple Lie algebras is not the structure theory of loop algebras but the structure theory of affine Kac-Moody algebras. In this paper we use this natural generalization to construct the natural analog of the nonperiodic Toda lattice. Surprisingly, the result is not the periodic Toda lattice but a new completely integrable system on the periodic Toda lattice phase space. This integrable system is prescribed purely in terms of Lie-theoretic data. The commuting functions are precisely the gauge-invariant functions one obtains by viewing elements of the loop algebra as connections on a bundle over S.
منابع مشابه
From Quantum AN (Sutherland) to E8 Trigonometric Model: Space-of-Orbits View
A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals. All of them are characterized by (i) a number of polynomial eigenfunctions and quadratic in quantum numbers eigenvalues for exactly-solvable case...
متن کاملIntegrable spin Calogero-Moser systems
We introduce spin Calogero-Moser systems associated with root systems of simple Lie algebras and give the associated Lax representations (with spectral parameter) and fundamental Poisson bracket relations. The associated integrable models (called integrable spin CalogeroMoser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations. For Lie alg...
متن کاملNew Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملLoop Algebras and Bi-integrable Couplings∗
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations. The variational identities under non-degenerate, symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings. A special case of the s...
متن کاملLie Algebraic Approach to Nonlinear Integrable Couplings of Evolution Type
Based on two higher-dimensional extensions of Lie algebras, three kinds of specific Lie algebras are introduced. Upon constructing proper loop algebras, six isospectral matrix spectral problems are presented and they yield nonlinear integrable couplings of the AblowitzKaup-Newell-Segur hierarchy, the Broer-Kaup hierarchy and the Kaup-Newell hierarchy. Especially, the reduced cases of the result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997